REPORT DOCUMENTATION PAGE

AFRL-SR-BL-TR-01- _

Public reporting burden for this collection of information is estimated to average 1 hour per response, includi S
gathering and maintaining the data needed, and completing and reviewing the collection of information. Sen this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Service 6 4 @ 'son
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Papet

ces,

1. AGENCY USE ONLY (Leave blank/ |2. REPORT DATE

3. REPO _—
1 Apr 97 - 30 Jun 00

4. TITLE AND SUBTITLE D
Exploiting Problem Structure in Scheduling

5. FUNDING NUMBERS
F49620-97-1-0271

6. AUTHORI(S)
Adele Howe

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Computer Science Department

Colorado State University

Fort Collins, CO 80524

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES)
AFOSR

801 N. Randolph Street, Room 732

Arlington, VA 22203-1977

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

F49620-97-1-0271

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT
Approved for Public Release.

12b. DISTRIBUTION CODE

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH (AFOSR)
NOTICE OF TRANSMITTAL DTIC. THIS TECHAIC/ L% 0T
HAS BEEN REVIEWED AND IS APPROVED FOS PUBLIC h_tASE
LAWAFR 190-12. DISTRIBUTION IS UNLIAITED.

13. ABSTRACT (Maximum 200 words)

Many scheduling algorithms have been developed, but surprisingly there is little guidance as to which method to use for a
given application. This project addressed this gap be-tween the science and practice of scheduling by developing a
methodology for assessing performance and applying it to two problems: scheduling a manufacturing flow shop and
scheduling access requests for the Air Force satcllite control network. We found flaws in the conventional practice of
evaluating scheduling algorithms. In particular, performance on popular benchmark problems does not generalize to problems
with realistic problem struc-ture. Additionally, we found that the performance of algorithms previously deemed to be
state-of-the-art may be dominated by much simpler and computationally faster algorithms. We were able to explain the
differences in performance by characteristic patterns in the search spaces of structured problems.

14. SUBJECT TERMS

15. NUMBER OF PAGES

28
16. PRICE CODE

OF REPORT OF THIS PAGE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION |20. LIMITATION OF ABSTRACT]

OF ABSTRACT

Standard Form 2984Rev. 2-89) {EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Final Report for AFOSR #F49620-97-1-0271
FEzploiting Problem Structure in Scheduling
April 1, 1997 to June 30, 2000

Adele Howe L. Darrell Whitley
Computer Science Department
Colorado State University
Fort Collins, CO 80524
email: {howe,whitley}@cs.colostate.edu

October 2, 2000

Abstract

Many scheduling algorithms have been developed, but surprisingly there is little guidance
as to which method to use for a given application. This project addressed this gap be-
tween the science and practice of scheduling by developing a methodology for assessing
performance and applying it to two problems: scheduling a manufacturing flow shop and
scheduling access requests for the Air Force satellite control network. We found flaws in the
conventional practice of evaluating scheduling algorithms. In particular, performance on
popular benchmark problems does not generalize to problems with realistic problem struc-
ture. Additionally, we found that the performance of algorithms previously deemed to be
state-of-the-art may be dominated by much sirpier and computationally faster algorithms.
We were able to explain the differences in pérformance by characteristic patterns in the
search spaces of structured problems.

20010404 111

Contents
1 Project Objectives

2 Flow Shop Scheduling Studies
2.1 A Structured PFSP Generator ot it e
2.2 PFSP Algorithms
2.3 Relative Algorithm Performance: Empirical Results -
2.4 Assessing Problem Structure oL

3 Advances to Theory of Search
3.1 No Free Lunch and Problem Description Complexity
3.2 No Free Lunch and Representation

4 Application: Air Force Satellite Scheduling
4.1 'The Satellite Scheduling Problem
4.2 Scheduling Satellite Access Requests P
4.3 SSP Test Problem Generation v i
4.4 Experiment 1: Phase Transitions and Search Costs for the SSP
4.5 Experiment 2: Selecting a Feasibility Search Algorithm.
4.6 Experiment 3: Selecting a Subset Selection Algorithm
4.7 Interface to AFSCN Schedules

5 Accomplishments/New Findings

6 Executive Summary
6.1 Personnel e e e e e e e e e e e e e e e e
6.2 Publications . . . « « v v v e
6.3 Graduate TheSeS v v v i it e e e e e e e e e e e e e e e e e
6.4 Other Products« o v i i e e e e e e e e e e e e e e e e e

10
10
12

13
13
14
15
15
17
18
20

21

1 Project Objectives

The objective of our project was to exploit the benefits of systematic and non-systematic
search techniques for scheduling. To do so, we first needed to better understand the performance
of state-of-the-art scheduling algorithms. Many algorithms have been developed, but scientists
and developers know little about which algorithms to use for particula- applications or even
how to improve performance for particular applications. One of the major problems facing
developers is determining how a system developed on a given set of problems will actually
perform in the field.

To address our objective and the problem of scheduler developers, we proposed to analyze
information about the effects of structure in test problems on algorithm performance. Addi-
tionally, we proposed to implement a variety of scheduling methods, including our own Path
Relinking algorithm, and comparatively evaluate them.

As such, our project pursued three avenues of inquiry: empirical studies of algorithms on
scheduling problems, theoretical analyses of search, and application of our findings to an Air
Force scheduling problem. Thus, our report is organized in three parts to correspond to each
of these avenues. ‘

2 Flow Shop Scheduling Studies

Manufacturing scheduling, in particular flow shop and job shop, has garnered the most
attention from researchers and algorithm developers. Most scheduling algorithms have been
developed for and tested on these applications. Thus, we started our analysis of scheduling
performance on the most basic class of problem: flow shop scheduling.

Our empirical analyses examined key questions: Do algorithms scale-up? Does algorithm
performance depend on key problem features, in particular problem structure? How much effort
is required to improve solutions? How difficult are the problems?

Most researchers report the performance of their scheduling algorith:ns on problems avail-
able from a well known synthetic benchmark set reputed to contain difficult problems. The
underlying assumption of studies based on these problems is that if an algorithm performs well
on difficult synthetic problems, then it will also perform well on scheduling applications. How-
ever, the problems in this test suite were generated by selecting job processing times from a
single uniform random distribution; the problems were then submitted to a search algorithm for
solution. Problems were accepted as “difficult” if the search algorithm had trouble consistently
finding a good solution, as measured relative either to the lower bound or to a best known
solution.

However, real-world problems are not random — they typically are characterized by some
amount of structure, though it is rarely quantified and categorized. Starting from this observa-
tion, we questioned the underlying assumptions behind the use of benchmarks and examined
two of the previously mentioned questions: Does the performance of state-of-the-art algorithms
scale-up to PFSPs (Permutation Flow Shop Problems) that have structural features represen-
tative of those found in some real-world problems? How difficult are structured versus random
problems?

To address these questions, we constructed a test suite generator based on known charac-
teristics of some real-world problems. We then compared the performance of a suite of state-
of-the-art algorithms and heuristics on problems with varying structure. We also analyzed the
the search spaces for the problems to explain the observed differences in performance.

2.1 A Structured PFSP Generator

The scheduling problem was the well-known n by m permuutation flow-shop sequencing
problem (PFSP) [8]. Here, n jobs must be processed, in the same order, on each of m machines.
Concurrency is not allowed: a machine can only process a single job at a time, and processing
must be completed once initiated. Furthermore, machine j + 1 cannot begin processing a job
until machine j has completed processing of the same job. Each job i requires a processing time
of d;; on the jth machine. A candidate solution to the PFSP is simply a permutation of the n
jobs, 7. Given that the first job in 7 on the first machine begins at time step 0, the makespan
of 7 is defined to be the finish time of the last job in 7 on the last machine. The objective is
to find a permutation 7 such that the makespan is minimized.

The most commonly used PFSP benchmark problems are these introduced in Taillard (1993)
and available through the OR library. Taillard generated his problems by selecting the process-
ing times d;; uniformly from the interval [1,99] and then choosing a subset of problems based
on several criteria, including problem difficulty as measured by a Tabu search algorithm. In
expectation, and in contrast to many real-world problems, Taillard’s problems contain few or
no discernible structural features. :

Non-random structure is produced by drawing processing times from a number of Gaus-
sian distributions. For job-correlated problems, we use n distributions, one for each job. For
machine-correlated problems, we use m distributions, one for each machine. A parameter o
controls the expected degree of distribution overlap. Low degrees of distribution overlap yield
PFSPs with more structure because processing times selected from two distributions with little
overlap are typically much different. As the degree of overlap inc-cases, the amount of structure
decreases; in the limit, the distributions share the same mear, albeit with different standard
deviations.

In contrast to Taillard (1993), we do not filter for so-called difficult problems. Instead, we
concern ourselves with algorithm performance on classes of problems. Taillard defines difficulty
relative to a specific algorithm. Thus, any comparison of different algorithms would be biased
by such filtering, as problem difficulty can only be defined relative to an algorithm.

2.2 PFSP Algorithms

We implemented state-of-the-art algorithms based on three search methodologies: 1) path
relinking, 2) incremental construction, and 3) iterative sampling. The path relinking algo-
rithm by Reeves and Yamada (1998) was selected because it has demonstrated some of the
best performance to date on the problems from Taillard’s test suite and was similar in both
implementation and performance to a ”path relinking” algorithm that we had been developing
in house. Incremental construction refers to algorithms that use heuristics to build up a sched-
ule; this class was included because excellent heuristics are available for the PFSP domain.

Iterative sampling refers to a class of stochastic algorithms ranging from random sampling to
random-starts local search; this class was included primarily because of reported successes of
such algorithms on various scheduling applications.

Path Relinking Path relinking is a general search strategy in which the search space is
explored by looking for additional optima near two known local optima. During the process
of ‘linking’ or constructing a path between two local optima, the algorithm can check the
intervening area for other optima. Path relinking is the basis for the Reeves/Yamada PFSP
algorithm [18], which we denote by pathrelink.

Incremental Construction Algorithms NEH [13] is widely regarded as the best perform-
ing heuristic for the PFSP [20]. The NEH algorithm can be summarized as follows:

(1) Order the n jobs by decreasing sums of total job processing times on the machines.
(2) Take the first two jobs and schedule them so as to minimize the partial makespan as
if there were only two jobs.
(3) For k=3 ton do
Insert the k-th job into the location in the partial schedule,
among the k possible, which minimizes the partial makespan.

Despite its simplicity (O(n3m)), NEH produces reasonably good solutions to Taillard’s
benchmark problems. Solutions produced by pathrelink are either competitive with or exceed
the previously best known solutions. Yet the comparison is hardly fair: the run-time of NEH
is several orders of magnitude less.

We also implemented several systematic backtracking algorithms: Chronological Backtrack-
ing (CB), Limited Discrepancy Search (LDS), Depth-bounded Discrepancy Search (DDS), and
Heuristic-Biased Stochastic Sampling (HBSS). Chronological backtracking serves as a baseline
performer for the heuristic backtracking algorithms. LDS, DDS and HBSS had previously
shown promising performance on scheduling problems. For LDS [9] and DDS [23], a discrep-
ancy is defined as any point in the search where the advice of the heuristic is not followed.
LDS iteratively increases the maximum number of discrepancies allowed on each path from
the root of the search tree to any leaf. In contrast, DDS iteratively increases the depth in
the search tree at which discrepancies are allowed. Both algorithms assume the availability of
a good heuristic, such as NEH. DDS further assumes that discrepancies required to achieve
near-optimal solutions should occur at relatively shallow depths in the search tree. HBSS (3]
is an incremental construction algorithm in which multiple root-to-leaf paths are stochastically
generated. Instead of randomly choosing a move, an acceptance probability is associated with
each possible move. This acceptance probability is based on the rank of the move assigned by
the heuristic.

Iterative Sampling Algorithms We also implemented several iterative sampling algo-
rithms. In random sampling, a number of random permutations are generated and evaluated.

Another iterative sampling algorithm can be obtained by modifying step (2) of the NEH algo-
rithm. Instead of selecting the two largest jobs, we instead choose two jobs at random. Step
(3) of the NEH is then followed, without backtracking, to produce a complete schedule. We
denote this algorithm by NEH-RS (NEH with random-starts).

In iterative random sampling, local search is applied to the randomly generated solutions;
we denote this algorithm by itsampls (itevative random sampling with local search). Following
Reeves and Yamada (1998), we use a shift local search operator coupled with a next-descent
search strategy. Let 7 represent a permutation and m; be the element in the t* position of the
permutation. The operation 7; — 7; denotes that the ith element in the original permutation
is re-mapped to the j®* position. Given two randomly selected positions z and j, ¢ < j, the
shift operator SH(i,j) transforms 7 as follows:

T ey 1<k <]g
SH(i,j):m =7 mj—m
M > Tk, otherwise

The operator is applied to all pairs of jobs in a random order, with each improving or equal
move accepted.

2.3 Relative Algorithm Performance: Empirical Results

Algorithm performance was measured on six problem classes consisting of three sizes of
both job and machine-correlated problems: 50, 100 and 200 jobs, all executed on 20 machines.
For each problem class, we generated 100 problem instances with o ranging from 0.1 to 1.0,
in increments of 0.1. Varying the problem size allows us to assess algorithm scalability, while
varying o allows us to assess the influence of structure on algorithm performance.

For the pathrelink algorithm, either local search or path projection is performed at each
iteration. Each local search or path projection involves 1000 steps, each requiring an evaluation.
The total number of evaluations was liLuated to 100,000. For all itsampls trials, we allowed two
‘all-pairs’ iterations and limited the toial number of evaluations to 100K.

For each algorithm, we recorded the best makespan obtained on each problem. The optimal
makespans for these problems are unknown; we measured individual algorithm performance by
computing the percent above the best solution found by any of the search algorithms considered.
Finally, we obtained a summary measure of algorithm performance at each level of a for each
problem class by computing the average percent above best for the 100 problems.

Machine-Correlated Problems Figures la, 2a, and 3a record algorithm performance on
50 by 20, 100 by 20, and 200 by 20 machine-correlated problems. All algorithms significantly
outperformed random sampling. As a group, the stochastic algorithms (itsampls, NEH-RS,
and HBSS) outperform the deterministic algorithms (NEH, LDS, and DDS). The superior
performance of HBSS and NEH-RS is both sustained and magnified as problem size increases:
both algorithms scale extremely well. The performance of itsampls fails to scale to 200 by 20
problems; for small values of a, it is outperformed by the deterministic algorithms. Interestingly,
the two strongest performers, HBSS and NEH-RS, are based on a domain-specific heuristic
(NEH), while itsampls is not.

0 44 T T T T T — T T 009 ¥ T T T T T
—— DDS —=— DDS
ossh —>— HBSS 008 —>— HBSS 4
—e— ITSAMPLS —e— ITSAMPLS
—o— LDS —o— LDS
oal —a— NEH | e —<— NEH 1
—e— NEHRS —o— NEHRS
—s— PATHRELINK 008 —e— PATHRELINK|
Boasf 4 %
‘S‘ . E 0.05 1
g g
. ozr T &
& 2,004} 4
§ §
Z015 1 z
[003 4
P
o1 4
0.02 1
b
0 05¢ 7 0.01 1
. . ' % 1 . 5 <
[*A] 02 03 o4 05 06 07 08 09 o1 07 08 08
alpha
Figure 1: 50x20 machine-correlated (left) and job-correlated (right) results.
0.24 r T r r T . y 0.09 T - T . v - -
—+— DDS —~— DDS
018} —p— HBSS] 008 —>— HBSS 1
—e— ITSAMPLS —e— ITSAMPLS
016+ —— LDS 4 —— LDS
—<e— NEH oorr —<— NEH]
el —s— NEHRS] —s— NEHRS
—a— PATHRELINK oosl —e— PATHRELINK| |
ot} { &
0.05p
£ g
S ot 1 =
) 2,0 04)
E 008 1 g
< <
0031
006 b
0044 1 oo2g
00k P oo
N L) e P ey o $
01 02 03 04 05 06 07 [*X:] 09 1 01 02 03 04 05 06 07 08 09
alpha alpha
Figure 2: 100x20 machine-correlated (left) and job-correlated (right) results.
018 T T T T T T T T 035 T T T T T T T T
—»— DDS —~— DDS
016 —— HBSS . —>— HBSS
—e— ITSAMPLS 03 —e— ITSAMPLS
—o— LDS —— DS
014t —<e— NEH 4 —— NEH
—e— NEHRS ozsk —s— NEHRS 1
017 —e— PATHRELINK| —e— PATHRELINK

Average % above best

alpha

L
Y
-
»:

o,
>
o,
o
O,
@
o,
~

-
3 >8
8

Figure 3: 200x20 machine-correlated (left) and job-correlated (right) results.

The most striking aspect of Figures 1 - 3 is the inconsistent, and often poor, performance of
the pathrelink algorithm. For the machine correlated problems in Figure 1, pathrelink starts to
under-perform relative to both HBSS and NEH-RS between « equal to 0.1 and 0.2. At larger
values of a, pathrelink is outperformed by many of the other, simpler algorithms.

Job-Correlate Problems The rightmost graphs in Figures 1, 2, and 3 record algorithm
performance on 50 by 20, 100 by 20, and 200 by 20 job-correlated problems. Again, all algo-
rithms significantly outperformed random sampling. As was the case for machine-correlated
problems, the stochastic algorithms outperform the deterministic algorithms, excepting the
performance of itsampls, which fails to scale to larger problem sizes. Here, the performance
degradation of itsampls is even more rapid than that exhibited on machine-correlated problems;
on 100 by 20 and 200 by 20 problems, NEH obtains superior results at all values of c.

NEH-RS remains the strongest overall performer; it only slightly under-performs pathrelink
when o = 0.1. The move from 100 by 20 to 200 by 20 problems results in greater differences in
algorithm performance, although the relative order remains stable. In contrast to the machine-
correlated results, pathrelink consistently outperforms all other algorithms, on all problem sizes,
with the sole exception of NEH-RS. Even more interesting is the fact the performance pathrelink
appears to be independent of a, the level of non-random problem structure.

2.4 Assessing Problem Structure

The second question addressed by this study is: are the problems hard? In particular, we
wanted to determine what it means to be a “hard” problem and how this influences algorithm
performance. Taillard’s problems have been filtered to be “hard.” In other areas of Al, the
phase transition regions of problems such as SAT or Hamiltonian circuits have been explored
as a source of difficult test instances [6].

Reeves and Yamada (1998) show that Taillard’s difficult flow-shop problems display a big-
valley problem structure when the shift local search operator is used. The notion of big-valley
is somewhat iiuprecise. It suggests that 1) local optima tend to be relatively close to other local
optima, 2) better local optima tend to be closer to global optima, and 3) local optima near one
another have similar evaluations.

We hypothesized that the poor performance of the state-of-the-art pathrelink algorithm on
machine correlated problems might be attributable to a lack of the big-valley structure in our
problems. Thus, we tested the different types of PFSPs for it. In our experimental setup, the
underlying distribution (Gaussian or uniform) and the parameters defining the type of structure
(correlation on jobs, machines, and «, or no correlation) are the independent variables. The
dependent variables are the distance between local optima and the quality of the solutions
obtained, quantifying the presence and extent of the big-valley structure.

For each problem, we generated 2000 local optima by starting with random permutations
and running local search using the shift operator. The shift operator is repeatedly applied, in
a next-descent strategy for all the possible pairs of jobs in the permutation, in a random order,
until two passes through all the pairs does not result in any improvement. Because the global
optima for our problems are unknown, we next computed for each local optimum its average
distance to all the other local optima, as was done in the previous study [18].

Makespan

Taillard’s Problems In the leftmost graph of Figure 4, the results for a 50x20 problem
(TA052) from Taillard’s test suite serve as a prototypical example of a big-valley structure. In
this figure, the local optima tend to be clustered, with good local optima close to each other. To
determine the impact of the choice of distribution on Taillard’s problem generator, we replaced
the uniform distribution on the interval [1,99] with the Gaussian distribution 7(50.16). The
rightmost graph in Figuie 4 shows a typical example of the resulting scatterplots. The choice
of distribution appears tc have no significant impact on the existence of the big-valley structure.

3740

4000 T T T
° “1a0§2 piot® o "gaussi plot® o
.
3720 @ 4
° .
3950
3700
.
3680 -
3900 |
€
a0
K}
3
3850 |
3620
3800
3600
3750 - L A
350 400 600 320 340 360 500 520 540

450 500 380 400 420 440 460 480
Average Distance to Other Local Optiima Average Distance to Other Local Optima

Figure 4: Taillard’s TA052 50x20 instance, uniform distribution, no correlation (leftmost) and
a Taillard-like Gaussian distribution 50x20 instance (rightmost).

Correlated Problems We next investigated the effect of correlation on the landscape gen-
erated by the shift operator, when a Gaussian distribution is used. We generated local optima
and distance measures ‘or several 50x20 instances of both job and machine-correlated problems,
varying a from 0.1 to 1.0 in increments of 0.1. The graphs in Figure 5 shows the result for a
machine-correlated problem generated with o equal to 0.1. The results for job-correlated prob-
lems were similar. Note that an « of 0.1 represents a very low level of correlation. While there
is still evidence of a big-valley structure, another dominant structural feature begins to emerge:
strata of local optima at specific makespan values. Further analysis indicates that many mem-
bers of the same stratum actually belong to the same plateau and can be partitioned into a
small number of distinct local optima.

Although not shown, we also varied the amount of problem structure as measured by «.
The empirical evidence suggests that the number of plateaus gradually drops to only a few, and
all local optima are gradually absorbed into some plateau.

Finally, we checked for an interaction effect of the distribution and correlation. The question
is whether the plateaus emerged due to the combined influence of correlation and Gaussian
distribution. We therefore generated job and machine-correlated problems using a uniform
distribution. The result from a 50x20 machine-correlated instance (@=0.1) is shown in the
leftmost graph of Figure 5; the results for job-correlated instances were similar. As with non-
correlated problems, the choice of distribution appears to have little or no impact on the results.

Makospan

4850 T T T T 4890 T PN
“alphao.1 plor *alpha0 1 plot &
® HmEOEmrNEss SEEOR00 W ¢
4840 - 4880
.
A s Gy
4830 - ° 4870 o0’ owe s °°
© @00 e@® 00 o °
as20 | 4060 |- © eme TS e 1
o e cmEDOmmE 08 O A4 e
o = ° oo ° e
ol . L % do Cwtsuk o o 1
v = Smosoo o i e .
]
2
4800 2 sl
Ra o o aiad
v Gimili———

4790 + o 09 " - 4830 F

° © cemcoo o o

oeoe °
4780 } ° ° ° . 4820

- emmememem— o 0

o B oo ugp
a0 o K * 4810

3
4760 L " " " L 4800 L) L
480 480 500 5 620 840 660 380 400 420 560 580 600

20 540 560 580 800 440 480 480 500 520
Average Distance to Other Local Optima Average Distance to Other Local Optima

Figure 5: Machine-correlated 50x20 Instances, a=0.1. The left graph is a uniform distribution;
the right graph is a Gaussian distribution.

For job and machine-correlated problems, the big-valley structure is not the dominant structural
feature of the fitness landscape. As the level of structure is increased, the landscape is dominated
by only a few very large plateaus of local optima.

3 Advances to Theory of Search

Another goal of this research was to explore the idea that there is no general purpose ap-
proach to optimization. In 1995, this idea was formalized in the "No Free Lunch” theorem
[26]. The proof to this theorem shows that over all possible discrete optimization problems,
all search algorithms have the same performance. So if an algorithm A is better than algo-
rithm B on a set of benchmarks, then algorithm A is also guaranteed to be worst than B on
some complementary set of problems. This suggests that search algorithms must always be
application specific to some degree, but it also suggests that good results on benchmarks does
not necessarily translate into good results on other problems. However, the set of “all possible
discrete functions” is a rather large and nebulous set of problems. Does the No Free Lunch
theorem say anything about real world problems? This question has been hotly debated, but
there have been no proofs concerning whether No Free Lunch does or does not apply to real
problems. Note that this general question is very much relevant to our interest in comparing
state-of-the-art algorithms on different classes of problems: do good results on hard benchmarks
say anything about performance in general? The No Free Lunch theorem provides good reason
for caution.

We have generated two major results related to the “No Free Lunch” Theorem. Our results
are as follows.

3.1 No Free Lunch and Problem Description Complexity

First it is relatively simple to show that the No Free Lunch theorem also holds for all finite
sets of functions define over N!. Permutations can represent search problems when all points in

10

the search space have unique evaluations. Given a particular set of N evaluations we have N!
search algorithms and N! possible functions. We can then prove that the average description
length over the set of N! functions must be O(N lg N). Thus if the size of the search space is
exponentially large with respect to a parameter set which specifies a point in the search space
(as is true for all search problems), then the description length of each member of the set of N!
functions must also be exponential on average. o

Consider a set composed of N unique values, these N values can be mapped to a set V' of
evaluations for some objective function. Let X be the set of points and V the set of evaluations;
we then define a one-to-one objective function f:

f(z) =, veV,zeX.

Construct a set I of all permutation over the values in V. In this case, the set I represents all
objective functions which can be constructed over V. We will also use II to represent all search
algorithms which can be applied to the set of evaluation functions which can be constructed
over V. We will represent an algorithm by the order in which it samples the values in V. If
different search procedures enumerate the points in V' in the same order, then they form part of
an equivalence class. Resampling of points is ignored. Hence, in this context, algorithms as well
as functions are permutations. It is easy to show that a specialization of the “No Free Lunch”
theorem result holds [26] [16] [7]. On average, no algorithm is better than random enumeration
in locating the global optimum. If algorithms are ezecuted for only m steps, every algorithm
find the same set of best so-far solutions over all functions.

Focusing attention on a well defined set of permutations of finite length, allows one to make
more detailed comments about the No Free Lunch result as it pertains to this set.

THEOREM : The set of N! functions corresponding to II have a description length of O(N
lg N) bits on average, where N is the number of points in the search space.

Proof: The proof follows the well known proof demonstrating that the best sorting algo-
rithms have complexity O(N lg N). First, since we have N! functions, we would like to “tag”
each function with a bit string which uniquely identifies that function. We then make each of
these tags a leaf in a binary tree. The “tag” acts as an address which tells us to go left or
right at each point in the tree in order to reach a leaf node corresponding to that function. But
the “tag” also uniquely identifies the function. The tree is constructed in a balanced fashion
so that the height of the tree corresponds to the number of bits needed to tag each function.
Since there are N! leaves in the tree, the height of the tree must be O(lg(N!)) = O(N lg N).
Thus O(N lg N) bits are required to uniquely label each function. QED.

Note that the number of bits required to construct a full enumeration of any permutation
of N elements is also O(N lg N) bits, since there are N elements and 1g N bits are needed to
distinguish each element. Thus, most of these functions have exponential description. To be
NP-Complete, the description length must be polynomial. This means that an NP-Complete
problem class cannot be used to generate all N! functions. This includes NK-Landscapes [10]
and MAXSAT, for example.

This is, of course, one of the major concerns about No Free Lunch results. Do “No Free
Lunch” results really apply to sets of functions which are of practical interest? Yet this same
concern is often overlooked when theoretical researchers wish to make mathematical observa-
tions about search. For example, proofs relating the number of expected optima over all possible

11

functions [17], or the expected path length to a local optimum over all possible functions [22]
under local search are computed with respect to the set of N! functions. This is the first results
that shows that most of the No Free Lunch results hold over sets that do not correspond to real
world problems. On the other hand, there are other functions where the number of distinct
evaluations is small relative to the size of the search space. So it is still possible that No Free
Lunch results holds over sets of functions that are of practical interest. We hope to resolve ‘he
remaining open issues related to this question in the near future, but our work has already clar-
ified the relationship of the No Free Lunch theorem to most real-world optimization pioblems
where the number of evaluations is large relative to the size of the search space: No Free Lunch
in its general form does not hold for most problems of practical interest.

3.2 No Free Lunch and Representation

A form of the “No Free Lunch” theorem holds for representations. In this case, the “No Free
Lunch” theorem is stronger, because one can show that all possible algorithms are the same over
only 2 representations. This is true for Standard Binary Reflected Gray Coded representations
and Standard Binary Coded Decimal representations. This is troubling because we would like
to have guidance about what representation is best on average. Our results in the preceding
subsection are not specific enough to throw light on this problem. We next explore this problem
in more detail, then show that one can indeed distinguish between these two representations.

Over all possible functions, Gray codes and Standard Binary codes are equal in that they
both cover the set of all possible bit representations [25]. In spite of this No Free Lunch result
[26], applications oriented researchers have often argued for the use of Gray codes [4]. The
debate as to whether Gray coding is better than Binary representations has been a classic
example of where theory and practice clash. Our results bring theory and practice closer
together and yields new insights into the role of representation during search.

A measure of complexity is proposed that counts the number of local minima in any given
problem representation. On average, functions that have fewer minima are assumed to L less
complex than functions with more minima.

The set of functions which are considered are such that they can be remapped so that the
range of the functions is 0 to 22 — 1 and the domain the values 0 to 2 — 1. This restriction of
the domain and range has the advantage of mapping all functions that can be discretized and
represented by an L bit encoding onto a well defined finite set of functions. We will refer to
this set of functions as F, and f; as a function in F.

Two neighborhood structures over F' will be defined. Let F represent the set of wrapped
neighborhoods for functions in F. For all integers, 4, i — 1 and 7 + 1 are neighbors and the
addition and subtraction operations are mod 2 ~ 1 so that endpoint are also neighbors.

Let F represent the set of non-wrapping neighborhoods for functions in F'. For all integers,
i,7—1 and 7+ 1 are neighbors except that endpoints have a single neighbor; thus 0 and ol 1
are not neighbors. This is a relatively minor difference, but one that turns out to be useful for
proving properties about Gray and Binary representations.

Typically, when functions are encoded as bit strings, they are first mapped to F or F. Note
this neighborhood preserves local optima in the original function under search operators that
move to adjacent points in the space. The neighborhoods F and F preserve the connectivity of

12

the original function. After mapping to F or F, a bit representation is introduced. Assuming
that the original function has limited complexity (in that sense that it has fewer than the
maximum possible number of local optima), it can be proven that Gray codes on average
provide theoretical advantages over standard Binary encodings. In this situation, a special
family of Gray codes (called “reflected” Gray codes) will in expectation induce fewer total
optima than the corresponding set of Binary representations.

This lead to the following general result.

THEOREM: For classes of discrete parameter optimization problems with a bounded
number of local optimal, it can be proven that Gray codes representations induce fewer optima
on average than Standard Binary Coded Decimal representations. In this sense, Gray code
representations are better on average.

The proof is long and complex and is published elsewhere {24]. The proof also implies that
a specific bound on the number of optima that can be induced for a specific problems also has
a specific bound under Gray codes, but it can also be proven that a similar bound does not
exist for Standard Binary Coded Decimal representations.

This theoretical result is consistent with the experimental results that have accumulated
over the last ten year. Again, this is the first major result that shows that one can in general
say that one representation is generally better than another over large sets of problems that
are of practical interest.

4 Application: Air Force Satellite Scheduling

At the PI meeting in Monterey in May 1998, we were introduced to an Air Force scheduling
application: scheduling requests for access to the satellite ground stations. The problem is
severely over-constrained: they receive far more requests for access than can be accommodated.
At present, the task is accomplished by human schedulers with relatively little computer as-
sistance and requires schedules to be generated about a week in »<vance. Shortening the
scheduling window from one week down to two or three days would r.ean managing fewer ac-
tive scheduling windows at any point in time. In addition, shortening the scheduling time is
also desirable because high priority requests may arrive late, causing disruption to the overall
schedule.

We decided that we could apply the empirical methodology we had developed for studying
PFSP to this application. The goal is to help develop algorithms for assisting human schedulers
in more efficiently building schedules that better utilize the available time slots.

4.1 The Satellite Scheduling Problem

Our research considers a simplified form of the satellite scheduling problem (SSP) that is
ubiquitous in space-ground communications applications. The U.S. Air Force Satellite Control
Network (AFSCN) is responsible for coordinating communications between users on the ground
and satellites in space!. Communications to more than 100 satellites are performed through

!'We would like to thank Alex Kilpatrick of AFOSR and Brian Bayless of Schriever Air Force Base for providing
us with information on the application.

13

nine ground stations located around the globe, with an aggregate of sixteen antennas. To
reserve a particular ground station for a period of time, users submit a task request which
includes a required duration and a time window within which the duration must be allocated.
The AFSCN scheduling center receives requests from a variety of users, attempting to satisfy
the requests subject to the user-specified constraints. Over 500 requests are typically received
for a single day.)

Naturally, more requests are typically received than can be completely accommodated.
After human schedulers attempt to fit all 500 or so tasks into the schedule, often about 120
conflicts, or requests that could not be accommodated, remain. Because satellites are extremely
expensive resources, absolute rejection of requests is not an option. Rather, human schedulers
must engage in a complex, time-consuming arbitration process to create a conflict-free schedule
that maximizes utilization of the satellites.

Human schedulers use and balance many (potentially hard to quantify) criteria to develop
a conflict-free schedule. In this study, we focused on a single, although crucial, aspect of
the problem: minimizing the number conflicts before the arbitration process. Reducing the
number of conflicts up-front reduces 1) the work-load of human schedulers, 2) communication
with outside agencies, and 3) the time required to produce a feasible schedule.

4.2 Scheduling Satellite Access Requests

The SSP problem can be expressed as a decision problem: given a set of resources and a set
of requests, does a feasible schedule exist? Often, demand exceeds the available capacity and
the question then becomes how can one satisfy the maximum number of requests or otherwise
best utilize the resources. Thus, we decomposed the SSP resource allocation problem into a
two level scheduling problem. The higher-level problem is a subset selection problem: given
the complete set of tasks, find the largest subset of tasks which can be feasibly scheduled. The
lower-level problem is deciding feasibility: for a given subset of tasks does a feasible schedule
exist? Both the high-level subset selection problem and the low-le- el feasibility decision problem
are NP-Complete. A

Because it is a decision problem, constraint-based scheduling is a natural framework for
deciding SSP feasibility. Two heuristic approaches to constraint-based scheduling are prevalent
in the literature: slack-based [19] and texture-based [2]. The texture-based approach advocates
expending significant effort at each decision point to accurately characterize resource contention.
High-contention points are identified, and the contributing tasks are scheduled to reduce the
contention. In contrast, the slack-based approach advocates using inexpensive local information
to achieve the same goals. To date, comparative studies show no clear advantage to either
approach [2]. Both heuristics were originally applied to the static job-shop scheduling problem
(JSP), and have subsequently been applied to extensions of JSP such as multiple capacitated
resource scheduling [5] and the handling of alternative process plans {1]. We directly apply both
the B-Slack [19] and Sum-Height 2] heuristics to deciding SSP feasibility.

Following [19] and [2], both heuristics are incorporated into the high-level search pseu-
docode (“the Basic Scheduling Algorithm”) of [2]. Temporal arc-B consistency [12} is used
when any ordering decision is posted, while Constraint-based Analysis (CBA) is used to detect
both infeasible and implied/forced value orderings. However, we do not use the more powerful

14

edge-finding Exclusion and Not-First/Not-Last propagators [14] employed in [2]. As discussed
in Experiment 2 and 3 below, we allocate only a relatively small number of evaluations to de-
termine schedule feasibility. Under these circumstances, we found the edge-finding propagators
to actually impair performance.

In addition to chronological backtracking (CB), we examined three search algorithms from
our previous study of PFSP (see Section 2.2): LDS, DDS, and HBSS. HBSS uses a bias function
to determine next move; in all of our experiments, the quadratic bias function [3] yielded the
best overall performance.

4.3 SSP Test Problem Generation

We designed a problem generator to mimic features found in the real-world problem. Tun-
able parameters of the generator allow the structure of the problems to be systematically varied.
A problem consists of a set of task requests, each of which specifies a resource, a minimum du-
ration, a maximum duration, and a time window specified in a (midpoint,width) form within
which the task must be scheduled. To generate requests, the following parameters must be
specified: ‘

e the lower (D;) and upper (D,) bounds on the minimum task duration dpmn

e the maximum duration multiplier (My), which implicitly limits the maximum task dura-
tion dper

e the interval width multiplier (M,,), which limits the width of a task’s scheduling time
window

The minimum task durations d,,;, are sampled uniformly from the interval [D;, D,]. Once
selected, the maximum duration is given by dmaz = dmin - K, where K is a constant uniformly
sampled from the interval [1.0, Mj]. The time window midpoint W, is sampled uniformly fror -
the interval [1,1440], representing the length of a day in minutes. The time window widtk,
W, is given by Wy, = dpar - C, where C is a constant uniformly sampled from the interval
(1.0, My]. In our experiments, task durations are taken as dp,. Finally, because resources can
be independently scheduled, we consider only single-resource problems.

4.4 Experiment 1: Phase Transitions and Search Costs for the SSP

Our algorithm for solving the SSP is a two-level search process. The low-level process decides
feasibility of an SSP, and if that fails, the high-level process determines which tasks should be
eliminated to produce a feasible schedule. Clearly, there is a trade-off when allocating CPU
time to decide feasibility of sub-problems. If provided with inaccurate information regarding
SSP feasibility, the high-level search process may schedule fewer than the maximum number
of possible tasks. However, expending significant effort to decide feasibility will also limit
the amount of search done by the high-level process, again possibly resulting in sub-optimal
schedules.

To understand these tradeoffs, we need to identify interesting problem instances. Deciding
feasibility for both under and over-constrained SSP instances is relatively inexpensive: most

15

task ordering decisions are forced, and the heuristics are rarely employed. Further, by gener-
ating larger maximum duration and interval width multipliers (M, and M,,) we can make the
problems more difficult: increasing the scheduling window of each task increases both 1) the
number of interactions with other tasks and 2) the number of possible scheduling alternatives.
Thus, we expect the most difficult decision problems will possess a moderate number of tasks,
each with a relatively large scheduling window. Problems with small M; and M, should be
highly constrained, making feasibility easy to determine.

To confirm these hypotheses, we considered the following four problem classes, represented
as the following My-M,, pairs: 2-2, 2-4, 4-4, and 4-6. For each problem class, D; = 10 and
D, = 40. Problem size was varied from 2 to 100 tasks, in increments of 2, and 30 samples
were generated for each problem size. For each heuristic/search algorithm combination, the
following performance attributes were recorded on a per-instance basis: feasibility of the prob-
lem instance, number of evaluations (any node in the search tree) required, number of heuristic
commitments made (binary nodes in the search tree), and, for soluble instances, the number of
discrepancies required to reach the goal state.

1 SO T Sy
whw X8 pe B 0
PR RN L

0.8 |-

06

04

fraction of problems solved

02|

3
4
2
a

50
Requests

Figure 6: Fraction of feasible instances found for the four problem classes using B-Slack with
CB.

We next evaluated B-Slack and Sum-Height in conjunction with chronological backtracking
(CB). For each run, if 100K evaluations were consumed, search was terminated, and the problem
was deemed infeasible. Figure 6 shows the fraction of feasible instances found with the B-Slack
heuristic: the Sum-Height (not shown) results are nearly identical. Two features of Figure 6 are
worth noting. First, we see a relatively abrupt transition between feasibility and infeasibility,
as has been observed for SAT [11] and other NP-Complete problems [6]. Second, the slope of
the feasibility-infeasibility transition is relatively independent of the problem class.

Figure 7 shows the search cost, within the 100K evaluation limit, required to decide feasi-
bility of the problem instances used to produce Figure 6. Here, we see two main effects. First,
the peak in computation cost slightly lags behind the transition in feasibility. Further, the com-
putation cost tends to gradually decay after the phase transition, i.e., it is still relatively costly
to determine solubility for some infeasible problem instances. Second, as we hypothesized,

16

100000 90000
22 —
- 24 -
90000 80000 | 44 e |
K 46 +
80000 [70000 M ’
£ Yo
g Toor 2 s0000 °0 4
@ 3 R ¢
@ H ~
o 60000 a L
§ @ 50000 : * L
p g .
2 50000] e :
I S 40000 - Fie
= w .
g 40000 | - S
e & :
: 2 a0 |- .
< 30000 b 5 +
R4
20000 Py
20000 |- ;
L 10000 + es?
10000 oy
0 4 " 0 + s v k.
0 10 20 50 [10 20 30 a0 50
Requests Requests

Figure 7: Leftmost graph: Average number of evaluations required to decide feasibility, using
B-Slack with Chronological Backtracking. Rightmost graph: Average number of evaluations
required to decide feasibility, using Sum-Height with Chronological Backtracking.

problem difficulty increases with increases in the size of task scheduling windows — determin-
ing feasibility is relatively easy for the 2-2 and 2-4 problem classes. Although not shown, the
number of discrepancies and heuristic commitments also peak just after the transition region.
To summarize: the most difficult and challenging problems are those near the phase transition
and that possess relatively large task scheduling windows.

4.5 Experiment 2: Selecting a Feasibility Search Algorithm

Next, we characterized the performance of each heuristic under the systematic search al-
~gorithms with the goal of determining the best cost vs. probability of solution tradeoff for
the low-level search algorithm. Empirically, proving infeasibility typically requires an exces-
sive (> 30K) number of evaluations. As shown below, proving feasibility is often far more
tractable. Therefore, because we can only afford to allocate a small number of evaluations to
decide feasibility, we only consider feasible problem instances below.

Figure 8 shows the percentage feasible problems (those constructed in Experiment 1) solved
by LDS and HBSS within 100K evaluations. First, we note that LDS always outperforms HBSS,
independent of heuristic. Empirically, relatively few discrepancies (<= 8) are required to decide
feasibility for most of these instances. This is an advantage for LDS, which always finds solutions
with the smallest number of discrepancies possible. DDS under-performed both HBSS and LDS,
because the heuristic discrepancies required to establish feasibility often occurred deep in the
search tree. Second, for tasks with My-M,, duration pairs 2-2, 2-4, 4-4, the performance of
both slack-based and texture-based heuristics is almost identical under LDS (only 4-4 is shown
in Figure 8a). Third, when using LDS, the B-Slack heuristic performs slightly better than
Sum-Height on the more difficult 4-6 My4-M,, instances.

Figure 8b shows the average number of evaluations needed to solve feasible problems, within
the 100K limit. B-Slack requires more evaluations, but Sum-Height is more computationally
intensive. For a single resource, B-Slack and Sum-Height are, in the worst case, O(n?) and

17

7000
LDS
w HBSS
6000
LDS
HBSS
§ @ 5000
S 8
el ®
] =] HBSS
8 S 4000
= w
[=3 b
& &
B]
| 2 3000 HBss
2000
L LDS
x e " 1000 wm |
4-4 4-6 4-4 4-6 4-4 4-6 4-4 -6
B-Slack Heuristic Sum-Height Heuristic B-Slack Heuristic Sum-Height Heuristic

Figure 8: The two leftmost graphs show the percentage of feasible instances solved by B-Slack
and Sum-Height, using LDS and HBSS. The two rightmost graphs show the average number of
evaluations to solve feasible instance solved by B-Slack and Sum-Height, using LDS and HBSS.

0(n?) + O(nlog(n)) + O(n), respectively; n is the number of tasks assigned to the resource.
Our implementation of Sum-Height is 4 times more costly to compute than B-Slack. Given this
factor, Sum-Height does less work on the 4-4 problems, but does more total work on the 4-6
problems. However, we found the total execution times too similar to claim that one heuristic
was faster than another for deciding feasibility. But since B-Slack was equal to Sum-Height on
2-2, 2-4 and 4-4 problems, and resulted in more problems solved on difficult 4-6 problems, we
elected to use B-Slack to decide feasibility of SSP instances.

4.6 Experiment 3: Selecting a Subset Selection Algorithm

Slack-based and texture-based heuristics both operate by identifying areas of schedule con-
tention, and poscing task ordering decisions to reduce the contention. The slack-based approach
assumes that such information can be obtained by local examination of task interactions, while
the texture-based approach assumes a more detailed, global view is required. Contention is also
important in determining which tasks to remove, or bump, from the schedule to establish feasi-
bility. In an over-constrained schedule, eliminating the largest contributors to high-contention
regions of the schedule is likely to move the schedule toward feasibility. '

Because it provides a global view of the contention, our texture-based bump heuristic (T-
Bump) is a straightforward extension of the Sum-Height heuristic: identify the region of the
schedule with the largest contention, and bump the task which contributes most. In contrast,
we found that strictly local examination of slack between pairs of tasks was an extremely poor
heuristic. Thus, we defined a new slack-based bump heuristic (S-Bump) as follows. Consider a
task ¢ that interacts (via overlaps in their scheduling windows) with N other tasks j through
ordering decisions O;j, i # j. Define slack; = Eﬁ_.l maz(bslack(i — j),bslack(j — 4))/N.
Small slack; values are used to identify highly constrained tasks 4; posting further constraints
is likely to lead to infeasibilities. The S-Bump heuristic operates by selecting the task ¢ such
that slack; is minimized.

18

[Class || Heuristic [40 [45 [50 | 55 | 60 | 65 | 70 |

2-4 S-Bump o 0| 3| 3
T-Bump 0y 1]-1] 1
4-4 S-Bump 11 2 2| 1] 3
B T-Bump 0] 0| 3| 4| 4
(4.6 [S-Bump 1] 8] 6] 410
\ T-Bump 1] 3] 9] 5] 8

Table 1: The difference in number of scheduled requests under LDS and HBSS for both S-Bump
and T-Bump heuristics. A positive number indicates LDS scheduled more requests; negative
numbers show HBSS was best.

Both S-Bump and T-Bump select a single task to be removed from the schedule. The
alternative choice is to force task inclusion into the schedule. Before computing either heuristic,
all active tasks are placed on the schedule and edge-finding (both Exclusion and Not-First/Not-
Last forms) [14] is applied to constrain the initial placement of each task by taking into account
task interactions. Edge-finding examines subsets of tasks to determine constraints on their
scheduling windows. Without edge-finding, S-Bump performed very poorly and the performance
of T-Bump was only slightly degraded. Finally, we considered both heuristics in conjunction
with heuristic search algorithms.

To test our bump heuristics, we considered test problems that are between the 50% point in
the phase transition and the point where all problems are insoluble. For the problem classes 2-2,
2-4, 4-4, and 4-6 the number of tasks ranged from 20-40, 35-55, 45-65, and 50-70, respectively,
in increments of 5. For each problem size, 10 test problems were generated. We then ran
each combination of bump heuristic (S-Bump or T-Bump) and search algorithm (LDS, DDS, or
HBSS) and recorded the total number of tasks that were eliminated in order to produce a feasible
schedule. Each run c{ the high-level task subset selection algorithm was allocated a maximum
of 10K evaluations. For each candidate solution generated by the high-level algorithm, we used
B-Slack and LDS without edge-finding to decide schedule feasibility. Based on Figure 8b, we
allocated 1K for 2-2/2-4 problems and 8K evaluations for 4-4/4-6 problems.

Table 1 shows the difference in the number of conflicts (bumped tasks) between LDS and
HBSS; the reported value is the aggregate over all 10 problem instances in the category. Positive
values indicate LDS produced schedules with fewer conflicts than HBSS. Problem class 2-2
showed no differences in performance between LDS and HBSS. Here, smaller task scheduling
windows allow optimal solutions to be quickly found. For the problem classes with larger
task scheduling windows, LDS significantly outperforms HBSS. The difference is negligible for
problems near the 50% point of the phase transition, but is considerable for problems in the
insoluble region.

The poor performance of HBSS is partially attributable to the use of a fixed bias function.
Under the quadratic bias function (and a binary search space), both heuristics are followed with
probability 0.80. Given a typical search tree depth of 60, the expected number of discrepancies
on any root-to-leaf path is 12; this is larger than the number of discrepancies required by LDS
(which averages 5 and is never more than 8). Thus, careful tuning of HBSS is required to

19

Problem || 45 | 50 | 55 | 60 | 65 | 70

Class

(24 o[7[38] -[-] -]
(=2 o[2] 6[u[18] -]
| 4-6 [-J13] 7]16]12] 22|

“Table 2: The difference in number of conflicts between the S-Bump and T-Bump heuristics,
under LDS. A positive value indicates T-Bump was best.

achieve good performance-both search tree depth and heuristic quality should be taken into
account. A more promising approach is to dynamically compute the bias, as explored in [15].
Finally, DDS under-performed both LDS and HBSS because discrepancies deep in the search
tree were required.

Next, we considered the relative performance of S-Bump and T-Bump heuristics by com-
paring the performance of each in conjunction with LDS. Table 2 shows the difference in the
number of conflicts between S-Bump and T-Bump; reported values are aggregates over all 10
problem instances in the category. Positive values indicate T-Bump produced schedules with
fewer conflicts than S-Bump. We saw no performance difference on problem class 2-2: such
instances are over-constrained and easy to solve. However, T-Bump significantly outperforms
S-Bump on the more under-constrained problem classes. Further, the differences become larger
with increases in 1) the task scheduling windows and 2) the distance from the 50% point of the
phase transition. We hypothesized that characterizing contention is key to determining which
tasks should be bumped from the schedule. Based on our experimental results, we conjecture
that slack-based heuristics can accurately characterize global contention for moderately over-
constrained problems such as the JSP. However, the approach begins to break down in heavily
over-constrained problems such as satellite scheduling.

4.7 Interface to AFSCN Schedules

We developed a simple Java interface to the schedules. The purpose of the interface is to
allow a user to visualize conflicts and consider alternatives for dealing with them. Figure 9
illustrates a hypothetical situation where the initial set of requests has been displayed with
darker levels of gray-scale indicating greater conflict (this would be in color online). The user
can examine the set and then select a specific request to be “checkpointed.” The dark rectangle
outline highlights a specific client request. If this particular request appears to represent a
significant bottleneck, the request can be checkpointed to allow the user to look at the partial
schedule as it exists at the point when the system is trying to schedule this particular request.

At present, the system generates initial schedules using min-slack/greedy search and allows
the user to view, add, delete or move requests within the proposed schedule. We chose Java so
that it could be made available to users and experts over the World Wide Web. We intend in
a follow-up project to considerably extend the capabilities of the prototype.

20

s

Schedule: -: 1
. Requestfile. {4
. Show nit. profile. |
Show Final Prfife {3

Figure 9: User can view a schedule to identify bottlenecks and requests that may need to be
negotiated.

5 Accomplishments/New Findings

Flow Shop Scheduling Results: PFSP algorithms have been declared to be state of the
art when they out-perform others on known test problem sets, such as the Taillard problems.
The advantage of these problem sets is that they allow comparisons with existing methods
via published results. However, a common complaint is that methods that work well on test
problems often do not work well in real-world domains. If this is true, then applying a method
based on published accounts is a questionable endeavor; excellent published performance may
not generalize.

We developed a methodology for testing scheduling algorithms and explaining aspects of
the performance. We built a problem generator that introduces tunable amounts and types of
structure into PFSP problems. We then testea 3 suité of state-of-the-art algorithms on problems
with carefully controlled amounts and type of structure. From their observed performance, we
determined whether the method’s performance generalized. We followed up the performance
assessments by examining the search space for factors that would explain observed departures
in performance.

We have found that correlated job sizes differentially affect the performance of algorithms.
We have found, in general that simple stochastic algorithms using restarts (e.g., the Heuristic
Bias Stochastic Sampling algorithm, HBSS) with a good heuristic (in this case, NEH, a 1983
algorithm from the OR literature) produces the best overall results, and also are the most
robust with respect to changes in problem structure and scale-up. Stochastic algorithms out-
performed systematic algorithms. Additionally, branch and bound algorithms are no longer
as effective in either finding or confirming optimal solutions because the lower bound is so far
removed from the optimal solution.

On job-correlated problems, path relinking is the only algorithm to sometimes out-perform
the random restarts or HBSS with NEH algorithm—often the algorithms produce the same
answers. Path relinking also seems to perform well independent of the level of problem structure.
However, NEH is cheaper to execute, and path relinking performs relatively poorly on machine-

21

correlated problems.

These results show that exploiting even very simple problem structure (such as these corre-
lations) can significantly improve performance in real world domains. We have also found that
most systematic and stochastic algorithms can be improved by hybridizing the algorithm to in-
clude the occasional application of local search. Algorithms such as tabu search and simulated
annealing automatically include local search, but other methods do not.

We also partly explain how introducing correlation into a problem impacts the structure
of the search space and the difficulty of problems. Random problems have local optinia that
are generally grouped together, where local optima that are “near” to each other tend to have
a similar evaluation. But otherwise, these local optima tend to have distinct evaluations and
little other structure that is easy to characterize. However, as soon as processing times become
correlated (either in terms of machine processing time, or with respect to the processing time
of specific jobs), the local optima become organized into a plateau structure. The plateaus
overlap, but in general, the steps that are closer to the best known local optima have better
evaluations. Optima on the same plateau have the same evaluation-and also tend to be linked
in the sense that one can move from one solution to another on a plateau without changing the
evaluation. If one views all local optima on the same plateau as the same optimum, then the
introduction of problem structure in the form of correlation reduces the number of local optima
compared to random problems.

Our work has produced two major results. First, we demonstrate that superior performance
on a popular synthetic benchmark test suite fails to transfer to a test suite containing problems
with only modest levels of non-random features. Thus, our new test problems should also have
a significant impact on how researchers evaluate and test their scheduling systems. Second,
we show that the non-random flow-shop problems do not display a search space topology pre-
viously associated with difficult problems, thus partially explaining why previously successful
algorithms which exploit such structure fail on non-random problems.

Theoretical Results: Using a local search operator over a neighborhood of k points, we can
calculate the probability that any particular point in the search space will be a local munima
under an arbitrary change in representation. We also now have a closed form solution that
gives the expected number of local minima over all possible problems /representation.

A sub-theme to our work has related to “No-Free-Lunch” results: that is, over all possible
discrete problems, all algorithms have the same performance on average. We have been able
to generate new theoretical results concerning when No-Free-Lunch results are interesting—and
when they are not. First, No-Free-Lunch proves that black-box optimization, in the most general
case, does not work. On the other hand, we have proven that 1) for all known No-Free-Lunch
proofs, the set of problems that are covered by No-Free-Lunch on average have exponential
description length; hence, in some sense these problems ”on average” do not correspond to
problems of practical interest. On the other hand, we have proven that 2) “Free-Lunch” proofs
can be constructed that allow one to pick one representation over another. Gray codes and
Binary codes for discretized parameter optimization are the same over all problems, but on
certain classes of problems with polynomial description Gray codes are superior to Binary codes
in the sense that Gray code representations, on average, induces fewer optima. It would be

22

extremely interesting if similar results could be developed for permutation based representations
for scheduling problems, but it is not clear how to proceed toward such a theory. Hence we
have devoted the vast majority of our time and attention toward understanding the specific
kinds of problem structure that exists for specific applications such as flowshop, jobshop and
Remote Ground Station Scheduling.

Application Results: The methodology we developed for identifying good algorithms for
PFSP was applied to the AFSCN application. We developed a problem generator for the
application based on conversations with personnel at Schriever Air Force Base. We modified two
state of the art job shop scheduling heuristics, minslack and texture, to serve this problem. Then
we tested performance of algorithm/heuristic combinations on a suite of controlled problems
from the generator.

We found that slack-based heuristics perform better for deciding schedule feasibility, while
texture-based methods are better at deciding which tasks to eliminate from the schedule. As
slack-based heuristics are considerably cheaper to compute than texture-based, more schedules
can be assessed for feasibility in the same amount of time. .

As with PFSP, we examined the search spaces for the problems. We documented the
existence of a phase transition for the schedule feasibility decision problem. The problems
exhibit a relatively rapid transition from feasibility to infeasibility as the number of tasks is
increased, and a substantial increase in problem difficulty near the transition region.

To assist in the examination of proposed schedules, we built a Java interface to the schedules.
The interface allows users to graph the schedules in different ways and observe the effect of
changes.

6 Executive Summary

6.1 Personnel

During the grant period, the following personnel were supported at the indicated level:
Pls:

Adele Howe 4.0 months

L. Darrell Whitley 4.0 months
Research Assistants:

Laura Barbulescu 20.5 months

Sridhar Kandukuri 4.5 months

Jean-Paul Watson 13.0 months

Consultant:

Fred Glover 12 days
Administrative Assistant:

Lisa Kennedy 10.0 months

23

6.2

Publications

L. Barbulescu, J.P. Watson, A.E. Howe and L.D. Whitley. (1999) “Problem Structure
and Flowshop Scheduling”, Proceedings of CEDYA 99, Las Palmas de Gran Canaria.

F. Glover.(1997) “A Template for Scatter Search and Path Relinking”. Artificial Evolu-
tion”, Lecture Notes in Computer Science, 1363, J.-K. Hac, 5. Lutton, E. Ronald, M.
Schoenauer and D. Snyers (Eds.) Springer, pp. 13-54.

R. Heckendorn, S. Rana, D. Whitley. (1998) “Test functions generators as embedded
landscapes”. In Foundations of Genetic Algorithms, C. Reeves and W. Banzhaf, ed.,
Morgan Kauffman.

R. Heckendorn, S. Rana, and D. Whitley (1999). “Polynomial time summary statistics for
a generalization of MAXSAT”. Proceedings of the Genetic and Evolutionary Computation
Conference, GECCO-99. pp: 281-288.

R. Heckendorn, D. Whitley. “Predicting epistasis directly from mathematical models”.
Evolutionary Computation. 7(1):69-101.

A.E. Howe, L.D. Whitley, L. Barbulescu, J.P. Watson. (2000) Mixed Initiative Scheduling
for the Air Force Satellite Control Network, Second International NASA Workshop on
Planning and Scheduling for Space, March 2000.

A.E. Howe, L.D. Whitley, J.P. Watson, L. Barbulescu.(2000) “A Study of Air Force
Satellite Access Scheduling”, In Proceedings of the World Automation Conference, Maui,
HI, June 2000.

S. Rana, R. Heckendorn, D. Whitley. (1998) “A Tractable Walsh Analysis of SAT and its
Implications for Genetic Algorithms”. Proceedings of the Siztecnth National Conference
on Artificial Intelligence (AAAI-98). pp. 392-397, July 1998.

M. Vose, D. Whitley. (1998) “A Formal Language for Permutation Recombination Oper-
ators”. In Foundations of Genetic Algorithms, C. Reeves and W. Banzhaf, ed., Morgan
Kauffman.

J.P. Watson, L. Barbulescu, A. Howe and D. Whitley. (1999). “Algorithm Performance
and Problem Structure for Flow-Shop Scheduling”. Proceedings of the Sizteenth National
Conference on Artificial Intelligence (AAAI 99). Orlando, FL, July.

J.P. Watson, S. Rana, D. Whitley and A. Howe (1999). “The Impact of Approximate
Evaluation on the Performance of Search Algorithms for Warehouse Scheduling”. Journal
on Scheduling, 2(2):78-98.

L. D. Whitley, A. E. Howe, S. Rana, J. P. Watson and L. Barbulescu. (1998) “Comparing
Heuristic Search Methods and Genetic Algorithms for Warehouse Scheduling”, In Pro-
ceedings of the IEEE International Conference on Systems, Man and Cybernetics, San
Diego, CA. October, 1998.

24

L. D. Whitley, S. Rana and R. Heckendorn (1999). “The Island Model Genetic Algo-
rithm: On Separability, Population Size and Convergence”. Journal of Computer and
Information Technology, 7(1):33-47.

e L.D. Whitley (1999). “A Free-Lunch Proof for Gray versus Binary Encodings”. Genetic
and Evolutionary Computation Conference, GECCO-99. pp: 726-733.

e D. Whitley and L. Barbulescu and J.P. Watson (2001). Local Search and High Pre-
cision Gray Codes: Convergence Results and Neighborhoods. Foundations of Genetic
Algorithms, FOGA-6. Morgan Kaufmann.

e M. Vazquez and D. Whitley (2000). A Comparison of algorithms for the Static Job Shop
Problem. Parallel Problem Solving from Nature. Springer-Verlag.

e Manuel Vazquez and D. Whitley (2000). A Comparison of Genetic Algorithms for Dy-
namic Job Shop Scheduhng Genetic and Evolutionary Computation Conference, GECCO-
2000.

e Manuel Vazquez and D. Whitley (2000). A Hybird Genetic Algorithm for the Quadratic
Assignment Problem. Genetic and Evolutionary Computation Conference, GECCO-2000.

e D. Whitley (2000). Functions as Permutations: Implications for No Free Lunch, Walsh
Analysis and Statistics. Parallel Problem Solving from Nature. Springer-Verlag.

e L. Barbulescu, J.P. Watson, and D. Whitley (2000). Dynamic Representations and Es-
caping Local Optima. AAAI-2000. pp. 879-884.

e J.P. Watson, L. Barbulescu, A.E. Howe and L.D. Whitley. (2000) “Contrasting Structured
and Random Permutation Flow-Shop Scheduling Problems: Search Space Topology and
Algorithm Performance”, Submitted to Journal of Computing.

6.3 Graduate Theses

Both graduate research assistants completed their M.S. degrees within the grant period.
Their theses addressed issues from the grant. These documents can be obtained from the
authors or from Colorado State University.

“Lower Bound Computation for Structured Flowshop Scheduling” M.S. Thesis by
Laura Barbulescu in Fall 1999. Abstract:

In flowshop scheduling, lower bound computations can guide search and facilitate
comparisons between solution methods. The methods used to compute the lower
bound for flowshop problems exhibit a trade-off between the computational com-
plexity and the sharpness of the produced lower bound. When information about
the structure of the problem is available, simple methods can be designed that com-
pute lower bound values of quality similar to the ones produced by computationally

25

intensive methods. I study two types of structure in flowshop scheduling by gener-
ating two classes of problems. For the first problem class, for each job, I generate
processing times that are similar across all machines (job-correlated problems). For
the second problem class, for each machine, I generate processing times that are
similar for all the jobs (machine-correlated problems). For both types of problems
I identify easy to compute, tight lowe: bounds and relate them to existing lower
bound computations.

“The Impact of Approximate Evaluation on the Performance of Search Algorithms
for Warehouse Scheduling” M.S. Thesis by Jean-Paul Watson in Fall 1999. Abstract:

The Coors warehouse scheduling problem involves finding a permutation of cus-
tomer orders that minimizes the average time that customers’ orders spend at the
loading docks while at the same time minimizing the running average inventory.
Search based solutions require fast objective functions. Thus, a fast low-resolution
simulation is used as an objective function. A slower high-resolution simulation is
used to validate solutions. We compare the performance of a constructive schedul-
ing algorithm to a genetic algorithm and local search approach. The constructive
algorithm is based on a heuristic built specifically for this application. We also
tested a hybrid of the genetic algorithm and local search approaches by initializing
the search using the domain-specific heuristic. This hybrid genetic algorithm was
able to find the best solutions when evaluated by the high-resolution simulation.
Finally, we consider the effect of using the high-resolution simulation to filter a set
of solutions found by the different approaches.

6.4 Other Products

Software As part of this project, we hrve developed two problem generators and a user
interface for the AFSCN application. We v.ave made our PFSP problem generator publically
available via a web site for other researchers. Our problem generator for the AFSCN problem
can be made available by request.

We have also developed a prototype user interface in Java for the AFSCN scheduling prob-
lem. The interface allows a user to inspect proposed schedules and make minor changes to
them.

Web Site Our project web site is available at http://www.cs.colostate.edu/sched/. From
that site, you can access publications, software and problem instances from the project. By
making the problems and the generator available, we provide an alternative to the Taillard
benchmarks.

References

[1] J. Christopher Beck. Scheduling alternate activities. In Proceedings of the Sizteenth Na-
tional Conference on Artificial Intelligence, Orlando, FL, 1999.

26

2]

[3]

[4]

(5]

[6]

[8]

[9]

0]

[11]

[12]

[13]

[14]

[15]

J. Christopher Beck, Andrew J. Davenport, Edward M. Sitarski, and Mark S. Fox. Texture-
based heuristic for scheduling revisited. In Proceedings of the Fourteenth National Confer-
ence on Artificial Intelligence, Providence, RI, 1997.

John L. Bresina. Heuristic-biased stochastic sampling. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, Portland, OR, 1996.

R. Caruana and J. Schaffer. Representation and Hidden Bias: Gray vs. Binary Coding
for Genetic Algorithms. In Proc. of the 5th Int’l. Conf. on Machine Learning. Morgan
Kaufmann, 1988.

Amedeo Cesta, Angelo Oddi, and Stephen F. Smith. Profile-based algorithms to solve
multiple capacitated metric scheduling problems. In Proc. of the Fourth International
Conference on Artificial Intelligence Planning Systems, 1998.

P. Cheeseman, B. Kanefsky, and W. Taylor. Where the really hard problems are. In Pro-
ceedings of the Twelfth International Joint Conference on Artificial Intelligence, Sydney,
Australia, 1991. ‘

J. Culberson. On the Futility of Blind Search. Evolutionary Computation, 6(2):109-127,
1999.

Michael R. Garey and David S. Johnson. Computers And Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freemand and Company, 1979.

William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In Proceed-
ings of the Fourteenth International Joint Conference on Artificial Intelligence, Montreal,
Canada, August 1995.

S.A. Kauffman. Adaptation on Rugged Fitness Landscapes. In D.L. Stein, editor, Lectures
in the Science of Complezity, pages 527-618. Addison-Wesley, 1989. -

S. Kirkpartrick and B. Selman. Critical behavior in the satisfiability of boolean expressions.
Science, 264:1297-1301, 1994.

O. Lhomme. Consistency techniques for numeric csps. In Proceedings of the Eleventh
National Conference on Artificial Intelligence, Washington, DC, 1993.

M. Nawaz, E. Enscore, and I. Ham. A heuristic algorithm for the m-machine, n-job flow-
shop sequencing problem. OMEGA, The International Journal of Management Science,
11/1:91-95, 1983.

W. P. M. Nuijten. Time and Resource Constrained Scheduling: a Constraint Satisfaction
Approach. PhD thesis, Eindhoven University of Technology, 1994.

Angelo Oddi and Stephen F. Smith. Stochastic procedures for generating feasible schedules.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence, Providence,
RI, 1997.

27

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

(25]

[26]

N.J. Radcliffe and P.D. Surry. Fundamental limitations on search algorithms: Evolutionary
computing in perspective. In J. van Leeuwen, editor, Lecture Notes in Computer Science
1000. Springer-Verlag, 1995.

S. Rana and D. Whitley. Search, representation and counting optima. In L. Davis, K. De
Jong, M. Vose, aud D. Whitley, editors, Proc IMA Workshop on Evolutionary Algorithms.
Springer-Verlag, 1998.

Colin R. Reeves and Takeshi Yamada. Genetic algorithms, path relinking, and the flowshop
sequencing problem. Evolutionary Computation, 6:45-60, 1998.

S.F. Smith and C. Cheng. Slack-based heuristics for constraint satisfaction scheduling.
In Proceedings of the Eleventh National Conference on Artificial Intelligence, Washington,
DC, 1993. '

E. Taillard. Some efficient heuristic methods for the flow shop sequencing problem. Euro-
pean Journal of Operations Research, 47:65-74, 1990.

E. Taillard. Benchmarks for basic scheduling problems. E’uropean Journal of Operations
Research, 64:278-285, 1993.

Craig A. Tovey. Hill climbing and multiple local optima. SIAM Journal on Algebraic and
Discrete Methods, 6(3):384-393, July 1985.

Toby Walsh. Depth-bounded discrepancy search. In Proceedings of the Thirteenth National
Conference on Artificial Intelligence, Portland, OR, 1996.

D. Whitley. A Free Lunch Proof for Gray versus Binary Encodings. In GECCO-99, pages
726-733. Morgan Kaufmann, 1999.

Darrell Whitley and Soraya Rana. Representation, search and genetic algorithms. In
Proceedings oy the Fourteenth National Conference on Artificial Intelligence, 1997.

D. H. Wolpert and W. G. Macready. No free lunch theorems for search. Technical Report
SFI-TR-95-02-010, Santa Fe Institute, 1995.

28

